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Agenda

* Network analysis and deep graph learning for drug discovery

* Chemical space:
* DILI toxicophores (patient level data)
* Modeling substructures (bioassay data)
* Modeling multiple bioassay data simultaneously for toxicity
* Side effects of drugs (patient level data)

* Genetic space:
* Degree of toxicity (cell line data)




Chemical Space



Toxicophore
Substructures of drug related to toxicity



Supervised Random Walk for DILI Prediction
(DILI: Drug Induced Liver Injury)

Sangsoo Lim', Youngkuk Kim?, Sunho Lee3, Jeonghyun Gu?, Wonseok Shiné, Sun Kim23

1Dongguk University
2Seoul National University
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Question: Is the compound below toxic or DILI positive?




VINDESINE

Vindesine is an inhibitor of mitosis that
IS used as a chemotherapy drug

We determine vindesine as toxic drug by
identifying two subgraphs of vindesine
that are frequent in DILI positive drugs.


https://en.wikipedia.org/wiki/Mitotic_inhibitor
https://en.wikipedia.org/wiki/Chemotherapy

DILI Benchmark Data Sets

* US FDA - DiLIst

(DILIrank + LiverTox + Suzuki + Greene + Zhu)

Pre-defined Split
(temporal)

Train

455 - 148
293 - 98

Positive

Negative

To investigate whether the developed model could utilize the accumulated DILI
information from early approved drugs to predict later approved ones, we chronologically
divided the 1002 drugs into training and test sets based on the initial approval year. The
year 1997 was used as a threshold since the Food and Drug Administration Modernization
Act (FDAMA) (https://www.fda.gov/regulatoryinformation/selected-amendments-fdc-
act/food-and-drugadministration-modernization-act-fdama-1997) was implemented at
that time. The FDAMA of 1997 aimed to promote regulatory evaluation by adopting
emerging technologies and eliminate unexpected adverse drug reactions in drug products.
The drugs approved before and after 1997 were divided into a training set and test set,
respectively. Accordingly, the training set consisted of 753 drugs (455 DILI positive/298 DILI
negative), and the test set included 249 drugs (149 DILI positive/100 DILI negative).

LiverTox ( 663) || Suzuki (385) Zhu ( 2029)
+177 =952 +62=1014 +93=1107 +172 =
Added: Added: Added: Added:
456 DAL Fosttive 17 DILI Positive 62 DILI Positive 51DILI Positive 172 DILI Positive oo
309 DILI Negative | 160 DILI Negative 0 DILI Negative 42 DILI Negative 0 DILI Negative e
Drug Discovery Today

Li, Ting, et al. Chemical Research in Toxicology 34.2 (2020): 550-565.

* TDC - DILI

(NCTR + Greene + Xu)

Benchmark split Train Valid Test
Positive 175 11 50
Negative 150 43 46

Huang, Kexin, et al. NeurIPS (2021).
Xu, Youjun, et al. Journal of chemical information and modeling 55.10 (2015): 2085-2093.

NCTR data set]
. Chen, M.; Hong, H.; Fang, H.; Kelly, R.; Zhou, G.; Borlak, J.; Tong, W. Toxicol. Sci. 2013, 136, 242.
e Chen, M,; Vijay, V.; Shi, Q.; Liu, Z.; Fang, H.; Tong, W. Drug Discovery Today 2011, 16, 697-703.

Greene data set;
. Greene, N.; Fisk, L.; Naven, R. T.; Note, R. R.; Patel, M. L.; Pelletier, D. J. Chem. Res. Toxicol. 2010, 23,

1215-1222.

[Xu data set]
. Xu, J. J.; Henstock, P. V.; Dunn, M. C.; Smith, A. R.; Chabot, J. R.; de Graaf, D. Toxicol. Sci. 2008, 105,
97-105.




Our Approach

d In the human liver, drug metabolizes in a structure-dependent
manner (e.g. CYP enzymes).

- Graph based approach for subgraph identification

O Identifying supervised subgraph features (toxicophore) can provide
understanding on the mechanism of DILI.

- Supervised Random Walk

O There are favorable/avoidable structural patterns in drug design.

- Frequent subgraph patterns by SMARTS



Workflow of Our Approach

Initial set of chemical graphs (d graphs)
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Performance Comparison

a) Performance — DILIst data

Method Description AUC
DeepDILI 0.659
GraphLOG 0.566
MolHGCN -
AttrMasking 0.672
Unsupervised EdgePred 0.611
(ICLR, 2020) ContextPred 0.627
InfoMax 0.665
Unsupervised 0.669
Random Forests (RF) 0.693
SSM
(Our Approach) Feature S.election + RF 0.694
(Features: 10,459 - 2,537)
Ensemble Classifier (RF + MLP) 0.720

< SOTA

GNN Methods

~ GIN Methods

b) Performance - TDC data

Method Description AUC
XGBoost 0.925
AttrMasking 0.919
SIimGCN 0.909
AttentiveFP 0.886
Source: DeepPurpose (RDKit2D + MLP) 0.875
TDC Benchmark ContextPred 0.861
GCN 0.859
NeuralFP 0.851
DeepPurpose (Morgan + MLP) 0.832
DeepPurpose (CNN) 0.792
GraphLOG 0.820
MolHGCN -
Unsupervised 0.929
Random Forests (RF) 0.934
SSM
(Our Approach) Feature S.election + RF 0.880
(Features: 10,973 > 790)
Ensemble Classifier (RF + MLP) 0.927

< SOTA



Mining Frequent Subgraph Patterns by SMARTS

4 Goal: Identifying common subgraph patterns
0 Combination of N subgraphs (N =2, 3, ...) {Su?aphl}'{wbgraphz}'"{SUbgrath}
U Subgraphs to SMARTS (e.g. CCC=0.CC(C)C=0) - 2-mer

Sub, Sub,

U Find exactly matched frequent & non-overlapping subgraph

patterns in data sets.
O Use subgraphs of minimum support: 1% - 943 subgraphs

*SMILES (Simplified Molecular-Input Line Entry System): String formatted representation of chemical compounds
*SMARTS (SMILES ARbitrary Target Specification): Improved version of SMILES to specify substructural patterns in molecules.

Partial Credit: &1 A (SNU)



Drug Class specific Frequent DILI Patterns

O In FDA: DILIst data set,

Pattern: {ccn}.{cccccccl.{CCNCC} only found in DILI-positive compounds.

& E O\Owcdi; '
Yy DIE\, n e ”t:gl ”tigl Supporty,:  3.96%

Supportyentox: 0-00%

Quinolone antibiotic

Antimalarial

Carbonic anhydrase inhibitor

Penicillin antibiotic

Antiviral / anti-flu

antineoplastics

Atypical antipsychotic

LEVOFLOXACIN

valsartan




Generalizing substructures
with deep learning technologies



Molecular Property Prediction through
Fragment-based Bi-directional Hierarchical Graph Neural Network

Dohyeon Kim

Bio & Health Informatics Lab Under review



Model Architecture — Fragmentation Methods Methods

Constructed a Hierarchical Graph Structures Using Fragmentation Methods

* Fragmentation Methods * Hierarchical Graph Structure

BRICS - breaks retrosynthetic bonds Fragment-level Graph

0-0-03{ 00

Atom-level whole Graph

GIN message passing algorithm
for both atom and fragment-level graph

Bio & Health Informatics Lab



Model Architecture - Overview Methods

Graph Representations from Different Fragmentation Methods Concatenate Graph Representations
for Final Prediction

x N times [ ]
// ------------------------------------ \\
. — BRIC
[ LA \ - Fragment - Self-Attention Graph S Final
1 ! i i
| a- o ‘ Aeog iy : Embeddings Layer \ Representation || Prediction
: : Global Murcko — — |:|
: : Add — ——
1 1 Pooling
1 1 -
E E — Atom — Self-Attention / Functional
. I Embeddings Layer | | Group
|\ ,' | ]
Embedding -
Layer e
Predictor
Layer

Bio & Health Informatics Lab



Model Architecture — Self-Attention

Methods

Self-Attention to Improve Interpretability

____________________________________________________________________________________________________

G transformed into Q;, K;, V;

G={n", . n,.

k _
vay J‘I'L:.:-L :I } = Mﬂxdmuclpl

Qi = GWE, K, =Gwk, vi=awY

i

Multi-Head Attention

Attention ((2;, K;, Vi) = softmax( i

MultiHead (¢, K, V') = Concat (head, ..., head, ) W

where head; = Attention(Q;, K;, V;)

____________________________________________________________________________________________________

J_.

1 ~o
] S
] e
1 AN
'\ \
______ \
\ \
1 1
1 1
1 1
\ 4 1
]
Fragment - Self-Attentior{
Embeddings Layer
II
4
7
/
/
| 3
Atom — Self-Attention
Embeddings Layer

Jd

Bio & Health Informatics Lab

Fragment
Embeddings

Atom
Embeddings

sl

e -



Model Performance Comparison Results

Classification (higher is better 1)

ROC-AUC %
Datasets BBBP Clintox Tox21 ToxCast SIDER
# Molecules 2039 1478 7831 8575 1427
# Tasks 1 2 12 617 27
D-MPNN 71.0(0.3) 90.5(0.6) 75.9(0.7) 65.5(0.3) 57.0(0.7)
AttentiveFP 64.3(1.8) 84.7(0.3) 76.1(0.5) 63.7(0.2) 60.6(3.2)
Frag-BHGNN | 76.3(1.4) 80.3(3.6) 80.8(0.2) 74.9(1.0) 64.6(1.4)

Table 1: Frag-BHGNN performance on molecular property prediction classifi-
cation tasks

Bio & Health Informatics Lab



Attention Visualization - ToxCast

TOX21_Aromatase_Inhibition : inhibition of the enzyme aromatase
- Aromatase : an enzyme that plays a critical role in the biosynthesis of estrogens.

TETRACONAZOLE DICHLOFLUANID TAMOXIFEN CITRATE
— — TOX21 A tase_Inhibition : 1.0
TOX21_Aromatase_Inhibition : 1.0 TOX21_Aromatase_Inhibition : 1.0 X ;(:trer:i?ction_: 089

Prediction : 0.76 Prediction : 0.81

DESLORATADINE

OCTYL_GALLATE TOX21_Aromatase_Inhibition : 1.0
- Prediction : 0.88
TOX21_Aromatase_Inhibition : 1.0
Prediction : 0.89




Modeling bioassays simultaneously
for modeling toxicity



Multi-Task Aware Learnable Prototypes on Few Shot
learning for Molecular Property Prediction

Dr. Sangseon Lee

Under review



Why Multi-task Learning?
A Number of Assasy for Testing Toxicity

This study used curated data sets, MoleculeNet (Chemical Science 2019) which is standard test data
sets for Al research (a little bit outdated).

* Tox21:
e Qualitative toxicity measurements for 8,014 molecules with 12 tasks

e SIDER:
* Drug side-effects on 27 organs according to MedDRA classification for 1,427 molecules

* Toxcast:
* (Qualitative toxicity measurements for 8,615 molecules with 617 tasks



Motivation of Learning Prototypes

- Molecular property prediction in few-shot learning [©/&_asiv/iactive [ Leamable protoype |

» Limitation of existing
methods
** Focus on a single property

*** Neglect interrelated
properties of molecules

»Proposed approach

- Learnable Prototype
vectors —

+* Capture the shared
knowledge among multiple
interrelated molecular
properties

Existing methods

Property 1 Property 2
(Suppon B (Suppon B
& & & ©

XS *O?‘O AX ‘3\0
Query \ Quely\

Proposed method

E R B ¢ )\’\/Yr*v«k
|
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dx Lo ¢
\WIEIJ \*Ep-/
Query l Query l
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!
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)\ \ﬂ/\/u\o/\>\ .
(_ ; Succinylcholine >
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Overview of MTLP

- Multi-Task informed Learnable Prototype -
» (a) Learning of the prototype vectors in a meta-learning framework

» (b) A stochastic attention mechanism & multi-view contrastive learning losses

- - j —
aing —— active O Molecules ) A
(a) Meta-training of MTLP imctive [ Learanable Prototypes | | Active prototype vector (b) Refinement of Molecular Embeddings
{ \
T, <> Fingerprint V*\ pl .
—> [ Fewshotclsifcation | -
Ti 5 j—» — ¢ q:;
J | ——> - . Molecular embedding _F’h‘r,i ’ & _Cx)_..
Support Tol o ety T o8- % ga
: Q e :  Learnable Prototypes Meta update pO
ruE G | m— )
e | T | U \___Y__/
T ww (@, #)— e
L] | Query = Loroto -
|| I Loontrast ? attract reP® ‘
o oM
e — z:‘: - A(-:contraat '
_ff'_".'fr_u_'.'_' : attract . repel .
J - ‘Cproto J
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Comparison with baselines

(b) Visualization of a chemical space

Class ® Inactive @ Active Support Query @ Support ® Query

(a) Performance on benchmark datasets 3 5

Table 1: Performance comparison on benchmark datasets for molecular property prediction. Average ROC-AUC scores with standard devia-
tions for test tasks are reported. OOM: Out-of-Memory error, *: method utilizing pretrained graph encoder. The best results for each dataset

30

20

10
=1

are shown in bold. %o ®, g 0|
2 : ' ss\"f:"-'
Tox21 SIDER MUV ToxCast RERL R e TN §
=40 g ) =30 A % )
Mehod | joghor bt | bt dsho | sl bt | D0sht Lsho B L ¥
Siamese 80404035  65.004158 | 71104430 51434331 | 59.964543  50.004047 . . SNEL COSNEL
ProtoNet | 7498403 6558417 | 64543080 57504034 | 05884411  983lysss | 63.70+196  56.364154 (8) e el (b) after refinement

MAML | 802014001 T5.Td4048 | 70434076 67814110 | 63904908 60514319 || 66.794085  65.974504
TN | 7605500 601645 | 6784s00s  6290:15s [ 6522455 5000z [ 627srss  5001y0e
EGNN | 8121u05 Mddiom | 87s0m  T009p00s | 650008 6218517 || 63655157 61024104
lterRefLSTM 81.1010‘17 80.971:0‘10 69.63i0.31 71.7310'14 49.5615.12 48'54i3.1?

(c) Ratio of accurately predicting multiple
molecular properties.

PAR 82004010 80464013 | 4083031  TL8Tyous | 66484010 64124158 || 69724163 67281000 500 | ethod 460 :
Pre-GNN* | 82144008  81.684000 || 73964008 7324010 || 6714458 64514145 || 73084074  72.904084 400 | == Prepar 499 g1
Pre-PAR* | 84931041 83014000 | 78084016 74464090 | 69965137 66944110 || 75124084  73.634100 %’ . on

Meta-MGNN* | 82974010 82131013 | 75431001 73361030 || 08.99+18r 65544913 | OOM 00M = ‘=
MTLP* (ours) | 86.0450.15 83.5510.15 | 84-3640.1 81192031 | 7271085 69091126 || 76.03£0.00 75132005 e
olo 1 7 P~ % I
0# oflcorrzctly f:’redi:ted 'f‘askss
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Examples of Few-shot Prediction
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Predicting side effects
with deep learning technologies



Dual representation learning
for predicting drug-side effect frequency
using protein target information

Sungjoon Park?, Sangseon Lee’, Minwoo Pak, and Sun Kim*

IEEE Journal of Biomedical and Health Informatics 2024



Dataset

e 750 drugs X 994 side effects from SIDER database
* frequency € {0, 1, 2, 3, 4, 5}

* Drug features

: molecular graph, drug targets, drug-drug similarity
SMILES string DrugBank STITCH

* Side effect features
: MedDRA category, GloVe word embedding



Model architecture

@ Drug @ Side effect
Molecular graph Protein targets Drug-drug similarity Fingerprints P Word embedding |
E < | [ ovomr |||' MedDRA -g- Glove embedding
: | ) @y —
9 Sl
O o] 7 BT[]
N J )\ \ELEL T B JIN )
Ll MLP [TTTTTT1 ® [CITLITT]
LI T T TTT] ¥
, EEE A

[TITIT1]
Drug vector d [TTTITT] Side effect vectors [T TT[TTT]

Similarity-based loss Drug-side effect frequency prediction error Similarity-based loss

Side effect | ~
) Frequency =
F

= Drug
D

. . ~ T
sim(i,j) = s;s;

sim(i,j) = did}"




Drug protein target encoding

NetGP: Gene Perturbation Profile Extraction Algorithm

1.

Construct drug-specific
protein-protein interaction
(PPI) network

2.

Start network propagation
(NP) with target proteins
as seed genes

Drug-specific
Network

f
Protein 1
Protein 2
Protein 3

Protein 4

~ 4

Drugtargets

—

N TargetNet

Input

.

-

etwork Propagation
(NP)

Protein in NP
Top rank

|

< N
Protein 1
Protein 2
Protein 3

Protein 4
[
[ ]

e
~ o

Pathway
Enrichment

3.
Get top 100 proteins as a
result of NP

4.

Get genes of enriched
pathway as new seed
genes;

repeat until convergence



Adaboost

* An ensemble method to rebalance the sampling weights for the
training data

* Effectively integrates the use of heterogeneous drug features

I
B

|

1 — €10
e+ 2 ( )
) B v g €10 m

drug

Sampling
weight
matrix

side effect

Base
models
training

Error
matrix

Einalt : 1l
oosted —lo
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Results

MGPred [28] SDPred [30] DSGAT [31] Our mode

Metric

SCC -0.065 0.258 0.431 0.438
RMSE 3.435 3.649 1.470 1.407
MAE 3.314 3.539 1.174 1.057
AUROC 0.746 0.845 0.878 0.901
mAP (AUPRC) 0.178 0.347 0.403 0.436
nDCG@10 0.201 0.778 0.813 0.858
Precision@ 1 0.019 0.668 0.701 0.750
Precision@ 15 0.021 0.476 0.513 0.556
Recall@1 0.000 0.026 0.030 0.031
Recall@15 0.004 0.241 0.265 0.267

[28] Briefings in Bioinformatics, vol. 22, no. 6, 2021.
[30] Briefings in Bioinformatics, vol. 23, no. 1, 2022.
[31] Briefings in Bioinformatics, vol. 23, no. 2, 2022.



Results (cont’d)

e External validation using
independent nine drugs

Table 3. Independent nine drugs performance. We trained our
model on all 750 drugs and 994 side effects, and tested on nine
novel drugs. The prediction of drug-side effect frequency for these
drugs do not deteriorate with external data.

Drug name SCC RMSE MAE AUROC mAP

o FuIIy utilizes drug_d rug simila rity balsalazide 0.351  1.067 0.693  0.953  0.712
carboplatin 0.204 0.976 0.786 0.952 0.478

featu res cisatracurium -* 0.517  0.448 0.971 0.292
doxercalciferol 0.327 1.404 1.166 0.955 0.420

esomeprazole -0.144 1.678 1.317 0.937 0.554

everolimus 0.500 1.676 1.370 0.871 0.682

fidaxomicin 0.577 0.769 0.536 0.976 0.486

gadoteridol 0.434 1.059 1.796 0.898 0.470

ixabepilone 0.391 1.110 0.858 0.958 0.740

Avg. 0.330 1.140 0.997 0.941 0.537

* Only one-class label to predict



mAP m

Results (cont’d)

* Drugs with ambiguous target

— does not benefit from protein
Oyt target information

>

sample weight

N
A

o

5 1 * Targeted = w/ explicit targets
nee - * Cytotoxic = w/ ambiguous targets

—8— Targeted
Cytotoxic

0.50

0 45 o v - T T ng T
1 2 3 4 5 6

e Cytotoxic drugs initially show

7 5 5 10 worse prediction, but improve as

I Adaboost continues
Base model step in Adaboost



Ultimately, we want to show



Graph Learning for Toxicity and Side Effects
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(central nervous system depressant)
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A
H \
Acetaminophen ® o

(fever/pain treatment) ‘ o®
o ““
“
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Degree of Toxicity
In terms of Genetic Space



A Multi-dimensional Transcriptomic Ruler for
Liver Toxicity

Inyoung Sung’, Sangseon Lee’, Dongmin Bang, Jungseob Yi, and Sun Kim

Under review



Dataset

* 1,554 drug hepatotoxicity labeled data from DILIrank and LiverTox
 Toxic labeled drugs: 456
* Non-toxic labeled drugs: 1,098

e 17,738 drug-treated gene expression data from LINCS
e DMSO-treated samples: 2,791
* Non-toxic drug-treated samples: 11,333
* Toxic drug-treated samples: 6,405



Scientific Question and Our Approach

* Which of transcriptome profile represents DILI?

» Toxicity cannnot hardly be defiend as a binary decision, toxic vs. non-toxic.
* Degree of toxicty needs to be defined according to dose and treatment time.

* We construct a transcriptomic ruler for measuring degree of toxicity!



*PT: potentially toxic

Step 1: Generate dual-boundaries

* Goal: identification of region containing potentially toxic (PT) samples.
Maximumly perturbed transcriptomic state = Toxic transcriptomic signature!

* Use Dual-SVDD to generate dual-boundaries in two steps.

1st SVDD 2" SVDD
Drug-treated sample Discriminate potential drug effect Discriminate potential toxic effect

Use * X

O DMSO-treated

#x'
&
P 4
J

_ . *. outliers ‘ X
Bl Non-toxic drug-treated ‘ Inlier . - Inlier
remove * * remove
& new
. boundary ‘ X

“ Toxic drug-treated

/
/o
&
¥ z
P
P

\

Drug effect boundary Ouitliers Toxic effect boundary Outliers
- Drug-effect samples: [l “ - Potential toxic samples: X



*PT: potentially toxic

Step 1: Dual-boundaries of Toxic Signature

a. Dual-SVDD results

* Potential toxic (PT) samples
: 64 drug-treated samples

ODMSO
B Non-toxic
8 Toxic

&

¥
®
Q

&

\

&

R

b. Examples of PT samples

HN

OH
(
N~

o]

R

1st boundary

2nd boundary

In Out In Out
2,791 0 0 0
9,901 | 1,432 | 1,432 0
5,941 464 400 64

[ I \] HN)\%‘S =
}',./\
cl N o OH
NH,
Drug Amodiaquine Drug Troglitazone Drug Doxorubicin
Cell line NEU Cell line MCF7 Cell line HCC515
Time 24hour Time 24hour Time 24hour
Dose 10uM Dose 3.3uM Dose 10uM
o () P
YN WA
N “.‘/0 — :"ﬂ (N ] R H
/" ;—0, I}N\OO Oy -NH <\o @O\ﬁ 0}
AN A NH; I
‘\/\o/“‘\/ o O
Drug Dactinomycin Drug Quinine Drug Flutamide
Cell line VCAP Cell line SW948 Cell line SNUC5
Time 24hour Time 6hour Time 6hour
Dose 10uM Dose 10uM Dose 30uM




*RBF: Radial Basis Function

Step 2: Define of a liver toxicity distance

*Dysregulation of mechanism

* Goal: measurement the degree of liver toxicity of drug-treated samples

* Proposed liver toxicity distance to measure hepatotoxicity of drug-induced samples
based on distance from potentially toxic samples.

* Constructing toxic space by kernel PCA with RBF kernel

______________________________________________________________________

Potentlal toxics expression —— Embedding space of potential toxics
using Radial Basis Function

8 P4
@)

SR WY ®) Calculate the _E_
e @) Mahalanobis distance |
Non-toxics expression ¢ !

/

——
~

|||||||||Y||||||
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X
X
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I'IJJ
Dimension 2
g £
8 o
O O
@)
P

2" SVDD Liver mechanism-wise Single- dlmensmnal
with toxic effect boundary transcriptome distance



Ruler for a liver toxicity distance

* Goal: measurement the degree of liver toxicity of drug-treated samples

e Distance cross-validation

Non-toxic

Toxic

Ruler

l_ Dataset even split _l
Task A Task B
Non-toxic dataset A Non-toxic dataset B

Task A ruler Task B ruler
A Y,
~Dataset A outlier : ~ Dataset B outlier

Non-toxic boundary

\Mdary

DMSO boundary

0.0 0.2 0.4 0.6 0.8 1.0
Task A



Step 3: Biological Mechanisms for Liver Toxicity

* Because liver damage can occur through various factors and processes, it is necessary to
consider the heterogeneity of the mechanism of liver injury.

* Here, we propose a biologically interpretable multi-dimensional distance

Toxic
Mechanism 1

Toxic
Mechanism 2

Toxic
Mechanism 5

Mechanism 4 Mechanism 3

Single-dimensional Biologically interpretable

. . Liver mechanisms . . .
transcriptome distance multi-dimensional distance



Knowledge-based approach for Toxic MoA

* Literature search to identify well-known liver injury mechanisms

Nature Reviews Disease Primers
ANDRADE, Raul J., et al., 2019

PRIMER

(Drug-induced liver injury

Raul J. Andrade’-2*, Naga Chalasani?, Einar S. Bjérnsson“*, Ayako Suzukic7,
Gerd A. Kullak-Ublicks#, Paul B. Watkins'®", Harshad Devarbhavi’?, Michael Merza '3,
M. Isabel Lucena®™*, Neil Kaplowitz'® and Guruprasad P. Aithal'®
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WEAVER, Richard J., et al., 2020

PERSPECTIVES

Managing the challenge of
drug-induced liver injury: a roadmap
for the development and deployment
of preclinical predictive models

Richard J. Weaver(, Eric A. Blomme, Amy E. Chadwick, lan M. Copple.

M Drug uptake (1) Mitochondrial impairment

Inhibition of biliary efflux

) Lysosomal impairment
T
Reactive metabolites

s
* Chemical stress
« Oxidative stress
* Protein modification

5, Endoplasmic reticulum stress

Immune system
* Innate

* Adaptive

¢ Inflammation

Clearance

Given the multifactorial mechanisms

of DILL which contribute to drug attrition

in development and in clinical practice,

there is a need for new thinking in terms

of the development of a holistic approach

to the early detection of chemical liabilities
which are predictive of DILL Such an
approach must be mechanism-based,
pragmatic and sufficiently adaptable to be of
practical application: to influence drug design
early enough in the discovery phase; and to
manage risk assessment in drug development,

Diverse clinical
presentations of DILI

* Acute fatty liver with
lactic acidosis

* Acute hepatic necrosis

* Acute liver failure

* Acute viral hepatitis-like
liver injury

* Autoimmune-like hepatitis

* Bland cholestasis

* Cholestatic hepatitis

# Cirrhosis

* Immuno-allergic hepatitis

* Nodular regeneration

* Nonalcoholic fatty liver

* Sinusoidal obstruction
syndrome

* Vanishing bile duct
syndrome

Jo

urnal of hepatology

HAN, Hui, et al., 2020

Review

Danger signals in liver injury and restoration of homeostasis

Hui Han', Romain Desert'", Sukanta Das*’, Zhuolun Song"", Dipti Athavale'', Xiaodong Ge,

Natalia Nieto"**

JOURNAL
OF HEPATOLOGY|

Summary

Damage-associated molecular patterns are signalling molecules involved in inflammatory responses and

restoration

context of liver disease. Herein, we provide a comprehensive summary of the role of damage-associated
molecular pattems as danger signals in liver injury. We consider the role of reactive axygen species and

of homeostasis. Chronic release of these molecules can also promote inflammation in the

reactive nitrogen species as inducers of damage-associated molecular patterns, as well as how specific | S
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Use Prior-Knowledge for Toxic MoA

Oxidative

 5-dimensional distance stress

* Oxidative stress with 6 pathways

Immunological response with 3 pathways -
Bile acids
accumulatio,

Immunological
response

Altered lipid metabolism with 13 pathways

Mitochondrial dysfunction with 2 pathways

Bile acids accumulation with 2 pathways

Mitochondrial Altered lipid
dysfunction metabolism



Multi-dimensional Distance Examples

* Potential toxic samples

Oxidative Oxidative Oxidative
stress stress stress

Bile acids Immunological Bile acids Immunological Bile acids Immunological

accumulatio,

accumulatio) response accumulatiog response

Mitochondrial
dysfunction

Altered lipid
metabolism

Drug

Troglitazone

Cell line

VCAP

Time

24hour

Dose

0.1uM

Mitochondrial
dysfunction

Altered lipid
metabolism

Drug

Dactinomycin

Cell line HCC515
Time 24hour
Dose 10uM

Mitochondrial

dysfunction

Altered lipid
metabolism

Drug

Doxorubicin

Cell line PC3
Time 24hour
Dose 10uM




Multi-dimensional Distance Examples (ontq)

* Non-Potential toxic samples

*Toxic labeled drug

Oxidative
stress

Bile acids
accumulatio

Mitochondrial

dysfunction

Altered lipid
metabolism

Immunological

response

Drug

Dactinomycin

Cell line

HA1E

Time

24hour

Dose

10uM

*Toxic labeled drug

Oxidative
stress

Bile acids
accumulatio

Mitochondrial

dysfunction

Altered lipid
metabolism

Bile acids
accumulatio

Immunological

Drug

Amodiaquine

*Non-toxic labeled drug

Oxidative
stress

Mitochondrial

dysfunction

Altered lipid
metabolism

Drug

Daunorubicin

Cell line PC3
Time 6hour
Dose 10uM

Cell line HEPG2
Time 24hour
Dose 10uM

Immunological
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THANK YOU!!
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